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A METHOD FOR INFRARED DIAGNOSTICS OF A PLASMA 1041 

T I is the initial gas temperature, rna is the mass of the 
atom, ne and na are respectively the electron and atom 
densities per cm3

, ~ = fle / (na + fle) is the degree of 
ionization, J is the ionization potential, and T a is the 
atomic temperature, with 

where M is the Mach number of the shock wave. 
In the general case the derivative (dne/ dt}j in Eq. (7) 

is determined by the aggregate of the collision and 
radiative excitation and deactivation processes, ioniza­
tion, and recombination. In an exact determination of 
the ionization rate it is necessary to consider the sys­
tem of kinetic equations that determine the populations 
of all the levels of the atom. However, an analysis car­
ried out by Bates et a1. lUJ has shown that the populations 
of the upper excited states reach quasi-equilibrium 
values very rapidly, so it can be assumed that at any 
point behind the front of the shock wave the populations 
of the excited states are connected with the electron 
density by a modified Saha equation. We shall assume 
that this holds true for all the excited levels down to the 
first excited one. At the same time, the population of 
the ground state will differ from the equilibrium popu­
lation corresponding to the electron temperature. Thus, 
the relative population of the ground and first-excited 
levels will differ from the Boltzmann value. 

We note also that the absolute magnitudes of the 
populations of the excited levels for inert gases are 
very small, so that it can be assumed that the rate of 
change of the population of the ground state is equal to 
the rate of change of the electron density. 

Under our conditions ne - 5 x 1016 cm3
• Therefore, 

in accordance with the Griem criterion(I2J , the contri­
bution of the radiated transition to the value of (dne/ dth 
can be neglected and we can confine ourselves to colli­
sion processes. Then 

(dn.1 dt); = an.n. - ~n;, (9) 

where Q' and f3 are the constants of the ionization and 
recombination rates, and are connected with one another 
by the detailed-balancing principle 

a/~ = K(T.) , (10) 

while 
g+ 2(2!1I1l,kT. )'/· ( I) 

K(T.)= cxp ---
go II k1', 

is the Saha formula (the symbols here are standard). 
From (9) and (10) we can obtain for Q' the following ex­
pression: 

dll,/dt 

It should be borne in mind that the ionization rate 
constant determined from (11) is actually the rate con­
stant of the excitation from the ground state in electron­
atom collisions, since it is precisely this process which 
determines the ionization rate. Approximating, as usual, 
the dependence of the excitation cross section of the 
level E* on the electron energy near the threshold of 
eXcitation, by the straight line a = Ce(E - E*), we can 
obtain the following expression for the effective excita-

tion cross section Ce , corresponding to an electron en­
ergy exceeding E* by 1 eV: 

5kT. 1/ mnc cxp(E'/kT.) dnc 

C.= 2m.D2 V '!.kT. (E' + 2kTc)[ 1- n.2Jn.K(Tcl llz. n. dt . (12) 

From this relation we can determine Ce , if E* is known. 
The value of E* can be determined experimentally from 
our data, if the plot of In(Q'/T~/2) against l / Te is con­
structed for a sufficiently wide temperature interval. 

It should be noted that the quantity dne.' dt in formulas 
(7), (9), (11), and (12) is defined in a system connected 
with a particle, whereas experiment yields the deriva­
tive dfle/ dtL in the laboratory frame, with dt 
= (p d p l)di L · 

4. RESULTS AND THEIR DISCUSSION 

The experiments were performed at an initial xenon 
pressure of 3 mm Hg. The results of the experiments 
are shown in Fig. 2 for the two most characteristic 
regimes, with M equal to 11.2 and 12.7. The time inter­
vals between the margins on the oscillograms are 
67 ~sec of laboratory time. The method described 
above was used to determine from these oscillograms 
the profiles of the electronic and atomic temperatures 
and the distribution of the electron denSity in the shock 
waves. The atomic temperature was determined from 
formula (8). The results of such a reduction are shown 
in Figs. 3 and 4. It is easy to see that the atomic tem­
perature decreases quite sharply in the ionization proc­
ess, while the electronic temperature increases insig­
nificantly, approaching the atomic temperature in the 
equilibrium region. This is in agreement with the 
theoretical calculations of l7J , where it is indicated that 
the electron temperature in a xenon plasma behind the 
front of the shock wave is equal to the equilibrium 
atomic temperature. It follows from Fig. 3 that actually 
at M < 12.7 the electron temperature is practically 
always equal to the equilibrium atomic temperature. 
With increasing intensity of the shock waves , the chan­
ges of the temperatures T e and Ta increase. After the 
equilibrium state of the gas is reached, its temperature 
(now Te = Ta) begins to decrease, owing to the cooling 
of the plasma as a result of radiation losses. This cool­
ing reaches its largest value at M = 12.7, where the 
temperature of the plasma drops by 600 0 K within 
50 ~sec of laboratory time. We note that at M = 11.2, 
during the same time interval, the plasma cools only by 
200 o K. 

The distribution of the electron density in the shock 

FIG. 3. Distribution of the 
electronic temperature Te(.) and 
of the atomic temperature T a(O) 
behind the front of a shock wave 
in xenon. PI = 3 mm Hg (labora­
tory time) ; a-M = 11.2, b- M = 
12.7. 
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